Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterizing the walnut genome through analyses of BAC end sequences.

Identifieur interne : 002B65 ( Main/Exploration ); précédent : 002B64; suivant : 002B66

Characterizing the walnut genome through analyses of BAC end sequences.

Auteurs : Jiajie Wu [États-Unis] ; Yong Q. Gu ; Yuqin Hu ; Frank M. You ; Abhaya M. Dandekar ; Charles A. Leslie ; Mallikarjuna Aradhya ; Jan Dvorak ; Ming-Cheng Luo

Source :

RBID : pubmed:22101470

Descripteurs français

English descriptors

Abstract

Persian walnut (Juglans regia L.) is an economically important tree for its nut crop and timber. To gain insight into the structure and evolution of the walnut genome, we constructed two bacterial artificial chromosome (BAC) libraries, containing a total of 129,024 clones, from in vitro-grown shoots of J. regia cv. Chandler using the HindIII and MboI cloning sites. A total of 48,218 high-quality BAC end sequences (BESs) were generated, with an accumulated sequence length of 31.2 Mb, representing approximately 5.1% of the walnut genome. Analysis of repeat DNA content in BESs revealed that approximately 15.42% of the genome consists of known repetitive DNA, while walnut-unique repetitive DNA identified in this study constitutes 13.5% of the genome. Among the walnut-unique repetitive DNA, Julia SINE and JrTRIM elements represent the first identified walnut short interspersed element (SINE) and terminal-repeat retrotransposon in miniature (TRIM) element, respectively; both types of elements are abundant in the genome. As in other species, these SINEs and TRIM elements could be exploited for developing repeat DNA-based molecular markers in walnut. Simple sequence repeats (SSR) from BESs were analyzed and found to be more abundant in BESs than in expressed sequence tags. The density of SSR in the walnut genome analyzed was also slightly higher than that in poplar and papaya. Sequence analysis of BESs indicated that approximately 11.5% of the walnut genome represents a coding sequence. This study is an initial characterization of the walnut genome and provides the largest genomic resource currently available; as such, it will be a valuable tool in studies aimed at genetically improving walnut.

DOI: 10.1007/s11103-011-9849-y
PubMed: 22101470


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterizing the walnut genome through analyses of BAC end sequences.</title>
<author>
<name sortKey="Wu, Jiajie" sort="Wu, Jiajie" uniqKey="Wu J" first="Jiajie" last="Wu">Jiajie Wu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Sciences, University of California, Davis, CA 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of California, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gu, Yong Q" sort="Gu, Yong Q" uniqKey="Gu Y" first="Yong Q" last="Gu">Yong Q. Gu</name>
</author>
<author>
<name sortKey="Hu, Yuqin" sort="Hu, Yuqin" uniqKey="Hu Y" first="Yuqin" last="Hu">Yuqin Hu</name>
</author>
<author>
<name sortKey="You, Frank M" sort="You, Frank M" uniqKey="You F" first="Frank M" last="You">Frank M. You</name>
</author>
<author>
<name sortKey="Dandekar, Abhaya M" sort="Dandekar, Abhaya M" uniqKey="Dandekar A" first="Abhaya M" last="Dandekar">Abhaya M. Dandekar</name>
</author>
<author>
<name sortKey="Leslie, Charles A" sort="Leslie, Charles A" uniqKey="Leslie C" first="Charles A" last="Leslie">Charles A. Leslie</name>
</author>
<author>
<name sortKey="Aradhya, Mallikarjuna" sort="Aradhya, Mallikarjuna" uniqKey="Aradhya M" first="Mallikarjuna" last="Aradhya">Mallikarjuna Aradhya</name>
</author>
<author>
<name sortKey="Dvorak, Jan" sort="Dvorak, Jan" uniqKey="Dvorak J" first="Jan" last="Dvorak">Jan Dvorak</name>
</author>
<author>
<name sortKey="Luo, Ming Cheng" sort="Luo, Ming Cheng" uniqKey="Luo M" first="Ming-Cheng" last="Luo">Ming-Cheng Luo</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22101470</idno>
<idno type="pmid">22101470</idno>
<idno type="doi">10.1007/s11103-011-9849-y</idno>
<idno type="wicri:Area/Main/Corpus">002C23</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002C23</idno>
<idno type="wicri:Area/Main/Curation">002C23</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002C23</idno>
<idno type="wicri:Area/Main/Exploration">002C23</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterizing the walnut genome through analyses of BAC end sequences.</title>
<author>
<name sortKey="Wu, Jiajie" sort="Wu, Jiajie" uniqKey="Wu J" first="Jiajie" last="Wu">Jiajie Wu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Sciences, University of California, Davis, CA 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of California, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gu, Yong Q" sort="Gu, Yong Q" uniqKey="Gu Y" first="Yong Q" last="Gu">Yong Q. Gu</name>
</author>
<author>
<name sortKey="Hu, Yuqin" sort="Hu, Yuqin" uniqKey="Hu Y" first="Yuqin" last="Hu">Yuqin Hu</name>
</author>
<author>
<name sortKey="You, Frank M" sort="You, Frank M" uniqKey="You F" first="Frank M" last="You">Frank M. You</name>
</author>
<author>
<name sortKey="Dandekar, Abhaya M" sort="Dandekar, Abhaya M" uniqKey="Dandekar A" first="Abhaya M" last="Dandekar">Abhaya M. Dandekar</name>
</author>
<author>
<name sortKey="Leslie, Charles A" sort="Leslie, Charles A" uniqKey="Leslie C" first="Charles A" last="Leslie">Charles A. Leslie</name>
</author>
<author>
<name sortKey="Aradhya, Mallikarjuna" sort="Aradhya, Mallikarjuna" uniqKey="Aradhya M" first="Mallikarjuna" last="Aradhya">Mallikarjuna Aradhya</name>
</author>
<author>
<name sortKey="Dvorak, Jan" sort="Dvorak, Jan" uniqKey="Dvorak J" first="Jan" last="Dvorak">Jan Dvorak</name>
</author>
<author>
<name sortKey="Luo, Ming Cheng" sort="Luo, Ming Cheng" uniqKey="Luo M" first="Ming-Cheng" last="Luo">Ming-Cheng Luo</name>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="eISSN">1573-5028</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence (MeSH)</term>
<term>Chromosomes, Artificial, Bacterial (genetics)</term>
<term>DNA, Plant (chemistry)</term>
<term>DNA, Plant (genetics)</term>
<term>Expressed Sequence Tags (MeSH)</term>
<term>Genetic Markers (genetics)</term>
<term>Genome, Plant (genetics)</term>
<term>Genomic Library (MeSH)</term>
<term>Juglans (genetics)</term>
<term>Microsatellite Repeats (genetics)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Open Reading Frames (genetics)</term>
<term>Plant Proteins (genetics)</term>
<term>Retroelements (genetics)</term>
<term>Sequence Analysis, DNA (methods)</term>
<term>Sequence Homology, Nucleic Acid (MeSH)</term>
<term>Short Interspersed Nucleotide Elements (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (composition chimique)</term>
<term>ADN des plantes (génétique)</term>
<term>Analyse de séquence d'ADN (méthodes)</term>
<term>Banque génomique (MeSH)</term>
<term>Cadres ouverts de lecture (génétique)</term>
<term>Chromosomes artificiels de bactérie (génétique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Génome végétal (génétique)</term>
<term>Juglans (génétique)</term>
<term>Marqueurs génétiques (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Répétitions microsatellites (génétique)</term>
<term>Rétroéléments (génétique)</term>
<term>Similitude de séquences d'acides nucléiques (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Éléments SINE (génétique)</term>
<term>Étiquettes de séquences exprimées (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>ADN des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Chromosomes, Artificial, Bacterial</term>
<term>DNA, Plant</term>
<term>Genetic Markers</term>
<term>Genome, Plant</term>
<term>Juglans</term>
<term>Microsatellite Repeats</term>
<term>Open Reading Frames</term>
<term>Plant Proteins</term>
<term>Retroelements</term>
<term>Short Interspersed Nucleotide Elements</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Cadres ouverts de lecture</term>
<term>Chromosomes artificiels de bactérie</term>
<term>Génome végétal</term>
<term>Juglans</term>
<term>Marqueurs génétiques</term>
<term>Protéines végétales</term>
<term>Répétitions microsatellites</term>
<term>Rétroéléments</term>
<term>Éléments SINE</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Expressed Sequence Tags</term>
<term>Genomic Library</term>
<term>Molecular Sequence Data</term>
<term>Sequence Homology, Nucleic Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Banque génomique</term>
<term>Données de séquences moléculaires</term>
<term>Similitude de séquences d'acides nucléiques</term>
<term>Séquence nucléotidique</term>
<term>Étiquettes de séquences exprimées</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Persian walnut (Juglans regia L.) is an economically important tree for its nut crop and timber. To gain insight into the structure and evolution of the walnut genome, we constructed two bacterial artificial chromosome (BAC) libraries, containing a total of 129,024 clones, from in vitro-grown shoots of J. regia cv. Chandler using the HindIII and MboI cloning sites. A total of 48,218 high-quality BAC end sequences (BESs) were generated, with an accumulated sequence length of 31.2 Mb, representing approximately 5.1% of the walnut genome. Analysis of repeat DNA content in BESs revealed that approximately 15.42% of the genome consists of known repetitive DNA, while walnut-unique repetitive DNA identified in this study constitutes 13.5% of the genome. Among the walnut-unique repetitive DNA, Julia SINE and JrTRIM elements represent the first identified walnut short interspersed element (SINE) and terminal-repeat retrotransposon in miniature (TRIM) element, respectively; both types of elements are abundant in the genome. As in other species, these SINEs and TRIM elements could be exploited for developing repeat DNA-based molecular markers in walnut. Simple sequence repeats (SSR) from BESs were analyzed and found to be more abundant in BESs than in expressed sequence tags. The density of SSR in the walnut genome analyzed was also slightly higher than that in poplar and papaya. Sequence analysis of BESs indicated that approximately 11.5% of the walnut genome represents a coding sequence. This study is an initial characterization of the walnut genome and provides the largest genomic resource currently available; as such, it will be a valuable tool in studies aimed at genetically improving walnut.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22101470</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>02</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-5028</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>78</Volume>
<Issue>1-2</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterizing the walnut genome through analyses of BAC end sequences.</ArticleTitle>
<Pagination>
<MedlinePgn>95-107</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11103-011-9849-y</ELocationID>
<Abstract>
<AbstractText>Persian walnut (Juglans regia L.) is an economically important tree for its nut crop and timber. To gain insight into the structure and evolution of the walnut genome, we constructed two bacterial artificial chromosome (BAC) libraries, containing a total of 129,024 clones, from in vitro-grown shoots of J. regia cv. Chandler using the HindIII and MboI cloning sites. A total of 48,218 high-quality BAC end sequences (BESs) were generated, with an accumulated sequence length of 31.2 Mb, representing approximately 5.1% of the walnut genome. Analysis of repeat DNA content in BESs revealed that approximately 15.42% of the genome consists of known repetitive DNA, while walnut-unique repetitive DNA identified in this study constitutes 13.5% of the genome. Among the walnut-unique repetitive DNA, Julia SINE and JrTRIM elements represent the first identified walnut short interspersed element (SINE) and terminal-repeat retrotransposon in miniature (TRIM) element, respectively; both types of elements are abundant in the genome. As in other species, these SINEs and TRIM elements could be exploited for developing repeat DNA-based molecular markers in walnut. Simple sequence repeats (SSR) from BESs were analyzed and found to be more abundant in BESs than in expressed sequence tags. The density of SSR in the walnut genome analyzed was also slightly higher than that in poplar and papaya. Sequence analysis of BESs indicated that approximately 11.5% of the walnut genome represents a coding sequence. This study is an initial characterization of the walnut genome and provides the largest genomic resource currently available; as such, it will be a valuable tool in studies aimed at genetically improving walnut.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Jiajie</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, University of California, Davis, CA 95616, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gu</LastName>
<ForeName>Yong Q</ForeName>
<Initials>YQ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Yuqin</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>You</LastName>
<ForeName>Frank M</ForeName>
<Initials>FM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dandekar</LastName>
<ForeName>Abhaya M</ForeName>
<Initials>AM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Leslie</LastName>
<ForeName>Charles A</ForeName>
<Initials>CA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Aradhya</LastName>
<ForeName>Mallikarjuna</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dvorak</LastName>
<ForeName>Jan</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Luo</LastName>
<ForeName>Ming-Cheng</ForeName>
<Initials>MC</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>11</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005819">Genetic Markers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018626">Retroelements</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022202" MajorTopicYN="N">Chromosomes, Artificial, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020224" MajorTopicYN="N">Expressed Sequence Tags</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005819" MajorTopicYN="N">Genetic Markers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015698" MajorTopicYN="N">Genomic Library</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031324" MajorTopicYN="N">Juglans</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018895" MajorTopicYN="N">Microsatellite Repeats</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016366" MajorTopicYN="N">Open Reading Frames</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018626" MajorTopicYN="N">Retroelements</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012689" MajorTopicYN="N">Sequence Homology, Nucleic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020086" MajorTopicYN="N">Short Interspersed Nucleotide Elements</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>07</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>10</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>11</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>11</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22101470</ArticleId>
<ArticleId IdType="doi">10.1007/s11103-011-9849-y</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Genet. 2003 Jan;33(1):102-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12483211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13778-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11717436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Jul;12(7):1075-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12097344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2007 Oct;278(4):361-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17690909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W313-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20497996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Aug;40(6):903-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10527415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2010 Feb;8(2):196-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20078842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009 Oct 27;10:496</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19860896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 1994 Aug;37(4):690-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18470111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2000 Jun;87(6):872-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10860918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Sci Food Agric. 2010 Sep;90(12):1959-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20586084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2010 Jan;53(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20130744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2008 May;8(2):135-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17985162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2007 Dec;8(12):973-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17984973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Jpn J Genet. 1991 Oct;66(5):569-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1685658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1998 Mar;8(3):186-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9521922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Apr 24;452(7190):991-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18432245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Jul 1;23(13):1683-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17463017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2007 Apr;114(6):1081-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17287974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009 Jul 13;9:88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19594938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2002 Nov;105(6-7):1058-1066</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Genet Syst. 2005 Jun;80(3):161-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16172529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Genet Syst. 2008 Jun;83(3):227-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18670134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2006 Apr;49(4):289-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16699548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jun;50(6):1063-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 May;14(5):860-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15078861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2007 Dec;17(6):539-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18060764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2001 Dec;18(12):2315-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11719581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Aug;67(6):581-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18521706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009 Aug 07;10:371</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19664231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Apr;10(2):176-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17291821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6562-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8341669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008 Sep 19;8:95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18803819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5833-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18408163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutr J. 2010 May 12;9:21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20462428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Clin Nutr. 2010 Mar;64(3):274-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20087377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 May 29;9:253</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18510760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 Dec;5(12):509-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11200422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 Jun;61(3):505-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16830182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2009 May;93(5):473-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19442640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Dec 14;408(6814):796-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11130711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008 Apr 11;8:34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18405374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2003 Apr;14(2):214-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12732323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1999;33:479-532</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10690416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Jun;21 Suppl 1:i351-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008 Sep 18;9:423</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18801166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2010 Oct;42(10):833-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20802477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2010 Apr;97(4):660-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21622428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetica. 1999;107(1-3):53-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10952197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2006 Jul;276(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16703363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009 May 09;9:51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19426529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1998 Mar;8(3):175-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9521921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2002 Jan-Feb;93(1):58-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12011179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2007 Jun 11;7:29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17562019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2006 Apr;112(6):999-1008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16404583</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Aradhya, Mallikarjuna" sort="Aradhya, Mallikarjuna" uniqKey="Aradhya M" first="Mallikarjuna" last="Aradhya">Mallikarjuna Aradhya</name>
<name sortKey="Dandekar, Abhaya M" sort="Dandekar, Abhaya M" uniqKey="Dandekar A" first="Abhaya M" last="Dandekar">Abhaya M. Dandekar</name>
<name sortKey="Dvorak, Jan" sort="Dvorak, Jan" uniqKey="Dvorak J" first="Jan" last="Dvorak">Jan Dvorak</name>
<name sortKey="Gu, Yong Q" sort="Gu, Yong Q" uniqKey="Gu Y" first="Yong Q" last="Gu">Yong Q. Gu</name>
<name sortKey="Hu, Yuqin" sort="Hu, Yuqin" uniqKey="Hu Y" first="Yuqin" last="Hu">Yuqin Hu</name>
<name sortKey="Leslie, Charles A" sort="Leslie, Charles A" uniqKey="Leslie C" first="Charles A" last="Leslie">Charles A. Leslie</name>
<name sortKey="Luo, Ming Cheng" sort="Luo, Ming Cheng" uniqKey="Luo M" first="Ming-Cheng" last="Luo">Ming-Cheng Luo</name>
<name sortKey="You, Frank M" sort="You, Frank M" uniqKey="You F" first="Frank M" last="You">Frank M. You</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Wu, Jiajie" sort="Wu, Jiajie" uniqKey="Wu J" first="Jiajie" last="Wu">Jiajie Wu</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B65 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002B65 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22101470
   |texte=   Characterizing the walnut genome through analyses of BAC end sequences.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22101470" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020